Quantitative Study on Salinity Estimation of Salt-Affected Soils by Combining Different Types of Crack Characteristics Using Ground-Based Remote Sensing Observation

نویسندگان

چکیده

Soil salinity is one of the parameters used for determining extent soil salinization. During water evaporation, surface salt-affected soils in Songnen Plain, China, exhibits obvious shrinkage and cracking phenomena due to high salt content. The aim this current study quantify influence content on shrinkage–cracking process achieve quantitative extraction based different crack parameter types. In order above objectives, a controlled experiment was conducted. Subsequently, three kinds characteristics such as length, box-counting dimension, 12 gray-level co-occurrence matrix (GLCM) texture features were quantitatively extracted from standard binary patterns. predict physical–chemical properties models multiple linear regression (MLR), stepwise (MSR), artificial neural network (ANN) developed compared first two principal components GLCM features. results show that desiccation cracks determined by since film caused exchangeable cations thickness DDL can promote cracking. Although methods have prediction accuracy Na+, electrical conductivity (EC), total salinity, ANN-based method showed best with R2 values EC, 0.91, 0.89, ratio performance deviation (RPD) corresponding 2.96, 3.47, 2.95.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

study of hash functions based on chaotic maps

توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...

Prediction of Soil Salinity Using Neural Network and Multivariate Regression Based on Remote Sensing Indices and Comparison: A Case Study of Qazvin plain's Salt Marsh

Introduction: The spatial and temporal distribution of salts in the soil, the great extent of the Iranian deserts, and the adverse climatic conditions prevailing over them make it difficult to accurately determine the parameters and field measurements in some cases. In the last two decades, the use of field techniques and their combination with remote sensing data has contributed significantly ...

متن کامل

Characterization of Salt - Affected Soils Using Hyperspectral Remote Sensing Data – a Case Study of Mathura District, Uttar Pradesh, India

Soil salinity / alkalinity development is one of the major land degradation problem affecting sustainable agricultural productivity in irrigated areas of arid and semi arid regions of the world. The characterization and mapping of salt affected soils is difficult as the salt concentration may vary substantially over short distances. Various broadband multi-spectral satellite data and spectral i...

متن کامل

a study on the effectiveness of task types (noticing-reformulation) on iranian low intermediate efl learners’ retention of collocations

چکیده پژوهش شبه تجربی حاضر به بررسی بکارگیری تمارین کلاسی که برانگیزنده آگاهی و توجه آگاهانه به همایندها بعنوان بخشی از یک دوره ی مکالمه زبان خارجی در یکی از آموزشگاه های زبان انگلیسی ایران است می پردازد.

Estimation of soil moisture using optical, thermal and radar Remote Sensing )Case Study: South of Tehran(

Traditional methods of field measurement of soil moisture in addition to the difficulty, the need for manpower and money and fail to take place on a large scale to be able to show moisture. Therefore, remote sensing has become a widespread use .Landsat 8 satellite data and Sentinel-1 radar satellite from Tehran were provided. 72 soil samples were taken at the same time by satellite passing from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2023

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs15133249